Cellular modelling: experiments and simulation to develop a physiological model of G-protein control of muscarinic K+ channels in mammalian atrial cells.
نویسندگان
چکیده
The first model of G-protein-K(ACh) channel interaction was developed 14 years ago and then expanded to include both the receptor-G-protein cycle and G-protein-K(ACh) channel interaction. The G-protein-K(ACh) channel interaction used the Monod-Wyman-Changeux allosteric model with the idea that one K(ACh) channel is composed of four subunits, each of which binds one active G-protein subunit (G(betagamma)). The receptor-G-protein cycle used a previous model to account for the steady-state relationship between K(ACh) current and intracellular guanosine-5-triphosphate at various extracellular concentrations of acetylcholine (ACh). However, simulations of the activation and deactivation of K(ACh) current upon ACh application or removal were much slower than experimental results. This clearly indicates some essential elements were absent from the model. We recently found that regulators of G-protein signalling are involved in the control of K(ACh) channel activity. They are responsible for the voltage-dependent relaxation behaviour of K(ACh) channels. Based on this finding, we have improved the receptor-G-protein cycle model to reproduce the relaxation behaviour. With this modification, the activation and deactivation of K(ACh) current in the model are much faster and now fall within physiological ranges.
منابع مشابه
Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملP 44: The Role of HCN Channels in T Cell Function
Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملElectrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail
Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 368 1921 شماره
صفحات -
تاریخ انتشار 2010